
Teaching Binary Tree Algorithms through Visual Programming

Amir Michail
Department of Computer Science and Engineering

University of Washington, Box 352350
Seattle, Washington 98195, United States of America

amir@cs.washington.edu

Abstract

In this paper, we show how visual programming can be
used to teach binary tree algorithms. In our approach, the
student implements a binary tree algorithm by manipulating
abstract tree fragments (not necessarily just single nodes)
in a visual way. This work contributes to visual program-
ming research by combining elements of animation, pro-
gramming, and proof to produce an educational visual pro-
gramming tool. In addition, we describe our experiences
with Opsis, a system we built to demonstrate the ideas in
this paper. (Opsis is a Java applet and can be accessed at
http://www.cs.washington.edu/homes/amir/Opsis.html.) Fi-
nally, we make the claim that visual programming is an ideal
way to teach data structure algorithms.

1 Introduction

The idea of using computers to teach algorithms is not
new; computer animations are used to illustrate many al-
gorithms. Although one might gain insight from watching
an algorithm animation, it is often the case, as with any pass-
ive activity, that important details are glossed over or missed
altogether. Indeed, the student may not really understand
the algorithm but merely have a pretense of having done
so. Empirical evidence suggests that students learn better
through active rather than passive activities.[9]

A more active method is to have the student implement
the algorithm in some textual programming language. In
this way, the student must understand the details of the al-
gorithm in order to implement it correctly. However, al-
though the student may now understand how the algorithm
works, this does not mean the student understands why it
works. Moreover, the student often has to go through the
drudgery of low-level details, such as pointer manipulation,
that are not crucial to understanding the algorithm. Worse
yet, the algorithm may naturally require the formulation of
mental pictures not readily expressible in code — the stu-

dent must constantly translate back and forth between the
mental pictures and textual code.

Another possibility is to have the student present a proof
of correctness for the algorithm. This is often done by com-
ing up with various loop invariants and then proving them
correct by induction. Now the student has to really think
about why the algorithm works. The low-level details of the
implementation need not be considered anymore. One prob-
lem with this approach is that the program may be quite large
and complicated, thus making a rigorous correctness proof
laborious and error-prone. Another problem is that the stu-
dent may not be able to easily experiment with concepts as is
possible with programmingon a computer. Furthermore, the
student does not gain the satisfaction of seeing the algorithm
execute after having implemented it.

In this paper, we show that through visual programming,
one can combine various elements of animation, program-
ming, and proof so as to teach binary tree algorithms in a
more effective manner. In our approach, the student imple-
ments a binary tree algorithm by manipulating abstract tree
fragments (not necessarily just single nodes) in a visual way.
In so doing, the student not only programs the algorithm but
also proves some of its properties and can animate it on ex-
amples if desired.

The remainder of the paper is organized as follows: Sec-
tion 2 surveys previous work done on related subjects; Sec-
tion 3 presents the visual programming model; Sections 4, 5,
and 6 describe visual binary tree depiction, navigation, and
manipulation, respectively; Section 7 discusses the correct-
ness of the visual binary tree programs; Section 8 describes
our current implementation; Section 9 presents preliminary
user testing with our system; and Section 10 provides a sum-
mary and future research directions.

2 Past Work

Many of the elements of our approach have been con-
sidered in earlier research, but not all at the same time, and
not within the context of an educational visual programming



tool. Moreover, we believe our approach is enhanced from
the synergy of many disparate ideas encountered throughout
the literature.

Much work has been done in algorithm animation. As an
example, the Zeus [1] system animates many fundamental
algorithms and does so in several ways. However, as we are
interested in abstract representations of trees (i.e, depicting
a class of trees, not just one), we draw upon more abstract
tree diagrams found in many algorithms and data structures
texts (such as [10, 4]).

Many visual programming systems have been designed
for beginning programmers or application end-users. In the
former group, we find systems like Glinert’s PICT [7], in
which a programmer uses icons and flowcharts to program
simple arithmetic computations. In the latter group, we find
systems like Modugno’s Pursuit [11], which allows end-
users to visually program simple shell scripts by example.
However, in both groups, the systems are not designed to
teach algorithms, nor do they allow easy construction of
complicated algorithms (such as AVL tree insertions or de-
letions).

Some visual programming systems have been designed
with more advanced programmers in mind. For example,
Christensen’s AMBIT/G [2] and AMBIT/L [3] languages
have been used to manipulate directed graphs and lists,
respectively. However, these languages are essentially a
visual version of Snobol with static pictures to indicate the
pattern matching rules; the resultant programs can be diffi-
cult to read and manipulate. Our approach is more dynamic,
similar in style to the data structure programming system
Think Pad [13], but easier to use and more abstract.

As we are also interested in visually proving various
properties of the binary tree algorithms, we borrow some
concepts (primarily loop invariants) from the area of pro-
gramming methodology (i.e., formal methods). Indeed, this
work is inspired by research into how one can implement an
algorithm and prove it correct at the same time.[8] However,
such efforts make use of complicated first-order logic ex-
pressions and are not necessarily suited — as is — for the
task of teaching algorithms.

3 Visual Programming Model

We use a state-based model for representing a program.
A user specifies transitions from one state to another by ma-
nipulating abstract objects in a visual manner. The idea is to
specify the algorithm in full generality — and not just on a
specific example. For this reason, our approach is not pro-
gramming by example [14, 12, 6] but is similar to program-
ming by abstract demonstration [5].

3.1 State Types

For our computation model, we use an abstract state,
which is an abstract visual diagram that represents a set of
concrete states (e.g., a set of binary trees). Two abstract
states are identical if and only if their respective abstract
visual diagrams match exactly. It is possible for two abstract
states to have different diagrams but still represent the same
set of concrete states.

For example, an abstract state may represent all binary
search trees with a node containing a certain key K. Such
an abstract state is shown visually in Figure 1, (4c). Another
abstract state, different from Figure 1, (4c), but that repres-
ents the same binary search trees is shown in Figure 2, (4).)

In the remainder of the paper, we shall use the word
“state” whenever we mean “abstract state”.

3.2 State Graph

Specifically, we model a user-defined function as a state
graph, which is a directed graph whose nodes represent
states and whose directed edges represent operations to
transform one state to some other(s). Computation starts at
the initial state and ends at one of the final states. The ini-
tial state specifies the parameters passed in to the function,
while each final state specifies a possible return value for
that function. In the state graph, the initial state has no in-
coming edges and the final states have no outgoing edges.
(In Figure 1, the initial state is (1) and the final states are (3b)
and (4c).)

(In Figures 1, 2, and 3, the operation shown (textually)
below each tree diagram is invoked on the selected frag-
ments in that diagram. Selected fragments are indicated by
dashed lines.)

3.3 Sequencing, Iteration, and Condition-
als

The state-based model subsumes sequencing, iteration,
and conditionals — no additional control flow constructs are
required. Sequencing is accomplished though simple trans-
itions from one state to another. Iteration is done by creat-
ing cycles in the state graph. Conditionals are done through
operations which result in two or more states. (In Figure 1,
sequencing occurs from (4b) to (2), iteration occurs in (2),
(3a), (4a), (2), and a conditional occurs from (2) to (3a) and
(3b). Observe that the loop ends when the subtree being ex-
panded in (2) is empty.)

4 Visual Binary Tree Abstractions

In this paper, we describe a visual formalism for imple-
menting dictionary “search”, “insert”, and “delete” opera-



expand

compare

K

(1) (2)

(3a)

(3b)

(4a) (4b)

(4c)

collapse collapse

fragment
insert empty

Figure 1. Visual code for binary tree search.

tions via binary search tree algorithms. This will be done
by manipulating nodes and fragments in a visual way.

4.1 Fragments and Subtrees

Before we proceed, we need to introduce the notion of a
fragment: a fragment is a (possibly empty) connected sub-
graph of a binary tree. A fragment is similar to a subtree in
that it consists of a root node and descendents of that node.
Unlike a subtree, a fragment need not include all descend-
ents of its root.

4.2 Visual Depiction of Nodes and Frag-
ments

Visually, we use a circle to represent a node and a triangle
to depict a (possibly empty) tree fragment. Nodes and frag-
ments may also be shaded light gray or dark gray. Those
shaded light gray have keys less than a certain key K; those
shaded dark have keys greater than K. (See Figure 1, (4a).)

A fragment may also be shaded light on the left and dark
gray on the right, thus indicating that it may have some
nodes with keys less than K and some nodes with keys
greater than K but that it doesn’t have a node with key K.
(For example, see Figure 1, (3b).) The vertical boundary
between the light and dark halves of a fragment indicates a
path of nodes, (x1; x2; : : : ; xj), such that:

1. the key at each xi is not K; and

2. xi is the left (resp. right) child of its parent xi�1 if and
only if K is less (greater) than the key at xi�1.

search insert

collapse

collapse

K

K

K

(1)

(2a)

(2b) (3)

(4)

Figure 2. Visual code for binary tree insertion.

(In Figure 5, we show: (1) an abstract tree diagram with
the upper fragment consisting of light and dark halves; (2)
a sample binary tree from the class of trees represented by
the abstract tree diagram. In this case, the nodes represen-
ted by the vertical boundary (separating the light and dark
halves) have keys: ‘X’, ‘K’, and ‘S’.)

A node labeled K indicates that the node has the desired
key K, while a fragment labeled K indicates that the (non-
empty) fragment has a node in it which has key K. (In Fig-
ure 1, (4c), a node with keyK is explicitly shown in the tree.
In Figure 2, (4), we just know that some node in the tree has
key K.)

5 Visual Binary Tree Navigation

The user can navigate around a binary tree by changing
the view to that tree. We believe this approach is flexible and
more natural than using pointer variables (as is done in tex-
tual programming languages). There are three main opera-
tions for changing views: expand, collapse, and insert empty
fragment.

5.1 Expand

The expand operation allows one to see an additional
node in a binary tree fragment if one exists, or to otherwise
determine that the fragment is empty. (In Figure 1, (2), we
use the expand operation to show the root node of the selec-
ted subtree if the subtree is non-empty (as in state (3a)), or
to indicate that the subtree is empty (as in state (3b)).)

If the fragment being expanded is non-empty, then the
particular node that will be shown depends on whether the
fragment is a subtree or not. If the fragment is a subtree, then
the fragment expands into a node (i.e., the root) connected to
its left and right subtrees. (This is what happened in Figure
1, (3a).)



 

search

K

collapse

remove

K

K

expand

K

K

K

collapse

K

remove

(1)

(2a)

(2b)

(3a)

(3b)

(4a)

(4b)

(5)

(6a)

(6b)

(7)

(8)

collapse

collapse

(9)

insert empty
fragment

remove

K

expand

expand

Figure 3. Visual code for binary tree deletion.

If the fragment is not a subtree (because some other
node/fragment appears below it), then the fragment expands
by showing the parent of the node/fragment just below it.
As that parent may have the node/subtree as its left or right
child, we have two cases. (In Figure 1, (4c), the top fragment
would expand by revealing the parent of the node labeled
K.) This latter type of expand is useful for moving up in
a tree, as one might do to maintain a balanced binary tree
structure.

5.2 Collapse

The collapse operation allows one to combine several
fragments into one fragment. The fragments to be combined
must be adjacent to each other in the tree.

(For example, in Figure 1, (4a), we use collapse to com-
bine three tree fragments into one, thus yielding state (2).)

Of course, it is possible for the fragments to be collapsed
to have different properties. Whether the resultant fragment
inherits a property from one of its constituent fragments de-
pends on the type of the property and on whether the other
fragments have that property:1

1. If the property is disjunctive, then if any of the frag-
ments have it, then the resulting fragment will have it.
(For example, in Figure 2, (2a), the resultant fragment,
(4), inherits the property that “it contains a node with
key K” because that property is disjunctive.)

2. If the property is conjunctive, then all fragments must
have it for the resulting fragment to have it. (For ex-
ample, in Figure 2, (2a), any property signifying nodes
with keys less than or greater than K are not pre-
served in (4) because such properties are conjunctive.
However, in Figure 3, (6a), the fragments to be col-
lapsed all have the property that “all nodes have keys
greater than K”, so the resultant fragment, in (5), re-
tains this property.)

5.3 Insert Empty Fragment

The insert empty fragment operation allows one to insert
an (initially) empty fragment anywhere in the abstract bin-
ary tree. In doing so, we obtain a new state that represents a
larger class of binary trees (but that includes all those repres-
ented earlier). Inserting empty fragments in this way allows
us to create loop invariants, which we use to form loops.

Whenever we insert a fragment, it is initially empty. This
means we can make the new fragment have any property we
desire — as long as that property doesn’t imply the existence
of at least one node. (For example, in Figure 1, (1), (2), we

1Similar rules can be formulated for “expand”, but we shall not do so
here.



add an empty fragment with the property that “no node have
key K”.)

5.4 An Example

We have now described various ways to navigate around
a binary tree. These concepts are sufficient to understand the
binary tree search algorithm shown in Figure 1.

Initially, we prepare to search for the key K in the tree
by adding an initially empty fragment above the currently
selected subtree (in state (1)). This new fragment does not
have any nodes with key K (so half of the fragment is
colored light gray while the other half is colored dark gray).
Upon adding the empty fragment, we obtain the the loop in-
variant for the search (shown in state (2)).

At this point, we wish to determine whether there is a
node with keyK in the selected subtree (in state (2)). So, we
expand the subtree, and depending on whether the subtree is
empty or not, we obtain state (3b) or state (3a), respectively.
If the subtree is empty, then we have shown that no node in
the binary tree has key K.

If the subtree is not empty, then we have revealed its root
node. We now compare this node’s key with K. The com-
parison yields one of three states (4a), (4b), (4c) depending
on whether the node’s key was greater than, less than, or
equal to K, respectively.

If the node’s key is equal to K, then we have found the
node and we are done. Otherwise, we are in state (4a) or
(4b). At this point, there is still a subtree which might con-
tain a node with key K. So, we collapse the other fragments
(which we know do not containK) to obtain the loop invari-
ant in state (2). In this way, we have formed a loop by match-
ing the loop invariant.

In Figures 4 and 5, we show the execution trace of this
algorithm on a sample binary tree. (This trace was generated
by the Opsis system, which we describe in Section 8.)

6 Visual Binary Tree Manipulation

None of the operations of Section 5 actually change the
binary tree in any way. In this section, we present two oper-
ations that do make changes.

6.1 Insert Node

The operation insert is used to put a new node in a binary
tree. The insert operation changes the structure of the tree,
so if the user is working with a binary search tree, it may
be that the insertion destroys the key ordering property of
the tree. To avoid this problem, insertions are only allowed
if the user has established that the point of insertion is in-
deed the right location for the key K. (In Figure 2, (2b), the
user has established through assertions about keys in the tree

(a)

(b)

(c)

(d)

Figure 4. The first four steps in an execution trace of bin-
ary tree search. We are looking for a node with an ‘M’ in the
example tree. In part (a), the system is about to add an ini-
tially empty fragment above the selected subtree. (Selected
fragments are shown with a shadow.) In part (b), the system
is about to expand the selected subtree. In part (c), the sys-
tem is about to compare the key of the selected node with
‘M’. In part (d), we see that the node has a key greater than
‘M’, so the system is about to collapse the node, its right sub-
tree, and the top fragment into a single fragment. In doing
so, we will return to the loop invariant state shown in part
(b). The algorithm continues in a similar manner. The final
step is shown in Figure 5.



Figure 5. The final state reached in the bin-
ary tree search example. (The first four steps
of this example are shown in Figure 4.) In
the diagram above, the system has found the
node with key ‘M’ and has marked it with very
dark shading.

Figure 6. The binary tree search algorithm developed in
the Opsis system. Editing occurs on the current state which
dominates much of the display. On the right, a sequence of
states show a history of the computation that leads to the cur-
rent state. Observe the arrow in the state history list: this ar-
row indicates that the operation on the state at its tail of the
arrow yields the state at its head (thus indicating a loop). At
the bottom, the final states of the computations are shown
(i.e., these are states at which the computation terminates).

(shown as light and dark shades) that the insertion point lies
on the search path and does not violate the ordering prop-
erty.)

6.2 Remove Node

The operation remove is used to take out a node from a
binary tree. If the node to be deleted has at most one child,
then the remove operation on that node is sufficient. Ob-
serve that taking out a leaf or node with one child cannot
destroy the key ordering property of a binary search tree. (In
Figure 3, the remove operation is illustrated in states (3b)
and (4b).)

If the node to be removed has two children, then the user
must activate the remove operation on that node and also
on its inorder predecessor (or resp. successor) node. In
this case, the operation moves the node information from
the inorder predecessor (successor) to the node and removes
the inorder predecessor (successor), which has at most one
child, from the tree. (As an example of such a case, see Fig-
ure 3, (6b).)

6.3 Other Operations

One can add other operations as required that manipulate
a binary tree. For example, for implementing balanced bin-
ary search trees, we provide “rotate left” and “rotate right”
operations. Generally speaking, one should provide oper-
ations that are high-level but that do not trivialize the al-
gorithm being taught. Moreover, we provide only opera-
tions that maintain the key ordering property of the binary
search tree; otherwise, we feel that the operation is too low-
level and error prone.

6.4 More Examples

We consider the binary tree insertion and deletion al-
gorithms in Figures 2, and 3, respectively.

In the binary tree insertion visual code, we invoke the
search operation (defined in Figure 1) on the subtree. This
yields two cases: either a node with key K is found (state
(2a)) or no such node exists in the tree (state (2b)). If we
found a node with key K, we simply collapse the fragments
in the tree (to yield state (4)). If not, we must insert a node
with key K. However, in state (2b), we have a subtree with
a vertical boundary that separates nodes with keys less than
K and nodes with keys greater than K. Thus, we can simply
insert the new node since the insertion point lies on the bin-
ary tree search path and will not violate the ordering prop-
erty. Finally, we collapse the resulting fragments to yield
state (4).

In the binary tree deletion visual code, we invoke the
search operation on the subtree. If no node has key K, then



we are done (as in state (2b)). Otherwise, we have a state
with the node with key K explicitly shown (as in (2a)). At
this point, we check if the node with keyK has less than two
children. If so, then a simple “remove” operation suffices.
(We check for a left child in states (2a), (3b), and for a right
child in states (3a), (4b).) If the node with key K has two
children, then we find its inorder successor so that we can
delete the node with the more complex form of the opera-
tion “remove”. We start the search for the inorder successor
by adding an initially empty fragment above the node’s right
child so that the right child is on the leftmost path in that
fragment (as shown in states (4a), (5)). Now, using a com-
bination of “expand” and “collapse”, we descend left along
the nodes until we reach the inorder successor (as is done
with the loop in states (5), (6a) which eventually terminates
to yield (6b)). Next, we invoke the “remove” operation on
the node with key K and its inorder successor to perform the
deletion (as is done in states (6b), (9), (2b)).

7 Correctness

The visual programs presented in Figures 1, 2, and 3 are
close to also being correctness proofs.

For example, consider the binary tree search program in
Figure 1. State (2) at the head of loop (2), (3a), (4a/b), (2)
is a visual loop invariant. The proof that this loop invari-
ant holds is also shown visually: in the first iteration, the
loop invariant holds vacuously because the fragment inser-
ted is empty; in subsequent iterations, the sequence (2), (3a),
(4a/b), (2) preserves the loop invariant (as long as no match
is made yet). Thus, the loop invariant in state (2) is proved
by induction in a visual way.

From the visual program, we know that if the program
terminates, then it will either find the node with key K or
assert that no such node exists. However, the program does
not show that the algorithm terminates or how long it takes
if it does.

Generally speaking, our visual formalism allows the user
to prove certain structural properties about the tree structure
and also ensures that the key ordering of binary search trees
is maintained. However, for complicated algorithms, one
may need to prove other properties that are not readily en-
coded in the tree diagrams. In this case, we recommend that
either the student simply not prove such properties, or that
he annotate the tree diagrams with English text to fill in the
details of the proof.

8 Implementation

We have been working on a system named Opsis, which
implements the model and domain described in Section
3. (The word “opsis” is Greek for the visual image of

an object.) Opsis is a Java applet and can be accessed at
http://www.cs.washington.edu/homes/amir/Opsis.html.
A snapshot of the system is shown in Figure 6.

8.1 User-Interaction

A user defines a function by starting out with the initial
state and by repeatedly invoking operations on one of the fi-
nal states at that point. (For convenience, the user is always
presented with a history of the computation and a list of all
final states at every step of the process; see Figure 6.) This
process continues until the only remaining final states in the
program represent valid return values of the function being
defined.

In particular, a user creates a state graph by concentrating
on one state at a time. The user selects by mouse some tree
fragment(s) in the current state and invokes an operation on
that selection. Invoking an operation causes the creation of
transitions from the current state to one or more other res-
ultant states. One of these resultant states (chosen arbitrar-
ily if there is more than one) replaces the current state on
the screen. Thus, creating a program is akin to designing an
“abstract animation” for the algorithm. Also, if any of the
resultant states match one already in the program, then the
current state is linked to the one already present; otherwise
new states are created as required.

8.2 Mirror Mode

In many balanced binary tree algorithms, such as with
AVL trees, one often has to deal with large computations that
are simply mirror images of one other. To reduce the pro-
gramming effort for such computations, the student can go
into “mirror mode” in which every state added to the com-
putation graph also leads to addition of its mirror image.

8.3 Annotations

Opsis allows the student to annotate various fragments
in the tree diagrams with text. This can be useful in two
ways: (1) to fill in additional details of a proof of correct-
ness that are missed by the visual representation; and (2) to
prevent false matches of states that should be treated differ-
ently (because the visual formalism is insufficient to distin-
guish them). Annotations represent properties and thus can
be disjunctive or conjunctive as explained in Section 5.2.

In addition, the system also allows the user to add inform-
ation to nodes in the trees. This can be useful for AVL or red
black tree algorithms where additional information must be
maintained at each node.



9 User Testing

We did some preliminary user testing with four stu-
dents in a third year data structures class at the University
of Washington. Each student was shown a few examples
on the system and was then asked to work out the binary
search tree deletion algorithm. Afterwards, the student was
given a questionnaire to fill out. Here are some typical re-
sponses/impressons from the students:

� Although students did not think this system is a re-
placement for textual programming assignments in a
data structures course, they did believe it improved un-
derstanding over algorithm animations.

� Similarly, students believed this system can be useful in
enhancing written textual proofs by showing key steps
in an (abstract) visual manner.

� Several students suggested that the system would be
useful in the classroom where the professor could go
step-by-step and even retrace, while explaining a writ-
ten algorithm.

� Students found a non-trivial learning curve at first, but
once the concepts were understood, they became very
interested in exploring the system further.

We found the user testing to be very useful in making the
system more intuitive and understandable. For example,
many students were confused about the idea of adding
empty fragments to the tree. However, when told that this
is done to create an induction hypothesis for a loop invari-
ant, they then understood the concept more readily.

10 Conclusion

In this paper, we have proposed a new way to teach binary
tree algorithms through visual programming. We believe
that this approach better allows a student to implement an
algorithm while concentrating on why it works rather than
on low-level implementation details. Moreover, our visual
approach not only yields a program but also a proof of some
properties maintained or that result from the computation.

Finally, we believe visual programming is not only a very
good way to teach binary tree algorithms (and more gener-
ally, data structures), but also a good way to teach algorithms
in other fields. It would be interesting to explore such pos-
sibilities further.

11 Acknowledgments

I would like to thank Steve Tanimoto for careful read-
ing of this paper, helpful suggestions, and encouragement

throughout this research. I would also like to thank Rick
Hehner for insights obtained from his theory of program-
ming.

Funding for this research was provided by the Natural
Sciences and Engineering Research Council of Canada.

References

[1] M. H. Brown. Zeus: A system for algorithm animation and
multi-view editing. In IEEE Workshop on Visual Languages,
pages 4–9, October 1991.

[2] C. Christensen. An example of the manipulation of dir-
ected graphs in the AMBIT/G programming language. In
M. Klerer and J. Reinfelds, editors, Interactive Systems for
Experimental Applied Mathematics, pages 423–435. Aca-
demic Press, 1968.

[3] C. Christensen. An introduction to AMBIT/L, a diagram-
matic language for list processing. In Proceeding of the 2nd
Symposium on Symbolic and Algebraic Manipulation, pages
248–260, 1971.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction
to Algorithms. MIT Press, 1991.

[5] G. A. Curry. Programming by Abstract Demonstration.
Technical Report 78-03-02, University of Washington, 1978.

[6] A. Cypher, editor. Watch What I Do. MIT Press, 1993.
[7] E. P. Glinert. PICT: Experiments in the Design of Interact-

ive, Graphical Programming Environments. Technical Re-
port 85-01-01, University of Washington, January 1985.

[8] E. C. R. Hehner. A Practical Theory of Programming.
Springer-Verlag, 1993.

[9] A. W. Lawrence, A. M. Badre, and J. T. Stasko. Empiric-
ally evaluating the use of animations to teach algorithms. In
Sympsoium on Visual Languages. IEEE, October 1994.

[10] H. R. Lewis and L. Denenberg. Data Structures and Their
Algorithms. Haper Collins, 1991.

[11] F. Modugno and B. Myers. A state-based visual language
for a demonstrational visual shell. In Sympsoium on Visual
Languages. IEEE, October 1994.

[12] B. Myers. Visual programming, programming by example,
and program visualization; A taxonomy. In Proceedings of
CHI ’86, pages 59–66. ACM, April 1986.

[13] R. V. Rubin, E. J. Colin, and S. P. Reiss. Think pad: A graph-
ical system for programming by demonstration. IEEE Soft-
ware, 3:73–78, March 1985.

[14] S. D. Smith. Pygmalion: A Creative Programming Envir-
onment. Technical Report STAN-CS-75-499, Stanford Uni-
versity, 1975.


