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Abstract

In this paper, we show how visual programming can be
used to teach binary tree algorithms. In our approach,
the student implements a binary tree algorithm by manip-
ulating abstract tree fragments (not necessarily just single
nodes) in a visual way. This work contributes to visual
programming research by combining elements of anima-
tion, programming, and proof to produce an educational
visual programming tool. In addition, we introduce Op-
sis, a system we built to demonstrate the ideas in this
paper. (Opsis is a Java applet and can be accessed at
http://www.cs.washington.edu/homes/amir/Opsis.html.) We
describe our experience with using Opsis in a data struc-
tures and algorithms course at the University of Washing-
ton. Finally, we make the claim that visual programming is
an ideal way to teach data structure algorithms.

1 Introduction

The idea of using computers to teach algorithms is not
new; computer animations are used to illustrate many al-
gorithms. Although one might gain insight from watching
an algorithm animation, it is often the case, as with any pass-
ive activity, that important details are glossed over or missed
altogether. Indeed, the student may not really understand
the algorithm but merely have a pretense of having done
so. Empirical evidence suggests that students learn better
through active rather than passive activities.[9]

A more active method is to have the student implement
the algorithm in some textual programming language. In
this way, the student must understand the details of the al-
gorithm in order to implement it correctly. However, al-
though the student may now understand how the algorithm
works, this does not mean the student understands why it
works. Moreover, the student often has to go through the
drudgery of low-level details, such as pointer manipulation,
that are not crucial to understanding the algorithm. Worse
yet, the algorithm may naturally require the formulation of

mental pictures not readily expressible in code — the stu-
dent must constantly translate back and forth between the
mental pictures and textual code.

Another possibility is to have the student present a proof
of correctness for the algorithm. This is often done by com-
ing up with various loop invariants and then proving them
correct by induction. Now the student has to really think
about why the algorithm works. The low-level details of the
implementation need not be considered anymore. One prob-
lem with this approach is that the program may be quite large
and complicated, thus making a rigorous correctness proof
laborious and error-prone. Another problem is that the stu-
dent may not be able to easily experiment with concepts as is
possible with programmingon a computer. Furthermore, the
student does not gain the satisfaction of seeing the algorithm
execute after having implemented it.

In this paper, we show that through visual programming,
one can combine various elements of animation, program-
ming, and proof so as to teach binary tree algorithms in a
more effective manner. In our approach, the student imple-
ments a binary tree algorithm by manipulating abstract tree
fragments (not necessarily just single nodes) in a visual way.
In so doing, the student not only programs the algorithm but
also proves some of its properties and can animate it on ex-
amples if desired.

The remainder of the paper is organized as follows: Sec-
tion 2 surveys previous work done on related subjects; Sec-
tion 3 presents the visual programming model; Sections 4, 5,
and 6 describe visual binary tree depiction, navigation, and
manipulation, respectively; Section 7 discusses the correct-
ness of the visual binary tree programs; Section 8 describes
our current implementation; Section 9 presents preliminary
user testing with our system; and Section 10 provides a sum-
mary and future research directions.

2 Past Work

Many of the elements of our approach have been con-
sidered in earlier research, but not all at the same time, and
not within the context of an educational visual programming
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tool. Moreover, we believe our approach is enhanced from
the synergy of many disparate ideas encountered throughout
the literature.

Much work has been done in algorithm animation. As an
example, the Zeus [1] system animates many fundamental
algorithms and does so in several ways. However, as we are
interested in abstract representations of trees (i.e, depicting
a class of trees, not just one), we draw upon more abstract
tree diagrams found in many algorithms and data structures
texts (such as [10, 4]).

Many visual programming systems have been designed
for beginning programmers or application end-users. In the
former group, we find systems like Glinert’s PICT [7], in
which a programmer uses icons and flowcharts to program
simple arithmetic computations. In the latter group, we find
systems like Modugno’s Pursuit [11], which allows end-
users to visually program simple shell scripts by example.
However, in both groups, the systems are not designed to
teach algorithms, nor do they allow easy construction of
complicated algorithms (such as AVL tree insertions or de-
letions).

Some visual programming systems have been designed
with more advanced programmers in mind. For example,
Christensen’s AMBIT/G [2] and AMBIT/L [3] languages
have been used to manipulate directed graphs and lists,
respectively. However, these languages are essentially a
visual version of Snobol with static pictures to indicate the
pattern matching rules; the resultant programs can be diffi-
cult to read and manipulate. Our approach is more dynamic,
similar in style to the data structure programming system
Think Pad [13], but easier to use and more abstract.

As we are also interested in visually proving various
properties of the binary tree algorithms, we borrow some
concepts (primarily loop invariants) from the area of pro-
gramming methodology (i.e., formal methods). Indeed, this
work is inspired by research into how one can implement an
algorithm and prove it correct at the same time.[8] However,
such efforts make use of complicated first-order logic ex-
pressions and are not necessarily suited — as is — for the
task of teaching algorithms.

3 Visual Programming Model

We use a state-based model for representing a program.
A user specifies transitions from one state to another by ma-
nipulating abstract objects in a visual manner. The idea is to
specify the algorithm in full generality — and not just on a
specific example. For this reason, our approach is not pro-
gramming by example [14, 12, 6] but is similar to program-
ming by abstract demonstration [5].

3.1 State Types

For our computation model, we use an abstract state,
which is an abstract visual diagram that represents a set of
concrete states (e.g., a set of binary trees). Two abstract
states are identical only if their respective abstract visual
diagrams match exactly. However, we do allow two states
with exactly the same abstract visual diagrams to not be
identical if the user so desires. This is allowed because we
do not assume that the abstract state completely defines the
state of the program at that point. Finally, it is possible for
two abstract states to have different diagrams but still rep-
resent the same set of concrete states.

For example, an abstract state may represent all binary
search trees with a node containing a certain key K. Such
an abstract state is shown visually in Figure 1, (4c). Another
abstract state, different from Figure 1, (4c), but that repres-
ents the same set of binary search trees is shown in Figure
2, (4).)

In the remainder of the paper, we shall use the word
“state” whenever we mean “abstract state”.

3.2 State Graph

Specifically, we model a user-defined function as a state
graph, which is a directed graph whose nodes represent
states and whose directed edges represent operations to
transform one state to some other(s). Computation starts at
the initial state and ends at one of the final states. In the state
graph, the initial state has no incoming edges and the final
states have no outgoing edges. (In Figure 1, the initial state
is (1) and the final states are (3b) and (4c).)

(In Figures 1, 2, and 3, the operation shown (textually)
below each tree diagram is invoked on the selected frag-
ments, which are denoted by dashed lines.)

3.3 Sequencing, Iteration, and Condition-
als

The state-based model subsumes sequencing, iteration,
and conditionals — no additional control flow constructs are
required. Sequencing is accomplished though simple trans-
itions from one state to another. Iteration is done by creat-
ing cycles in the state graph. Conditionals are done through
operations which result in two or more states. (In Figure 1,
sequencing occurs from (4b) to (2), iteration occurs in (2),
(3a), (4a), (2), and a conditional occurs from (2) to (3a) and
(3b). Observe that the loop ends when the subtree being ex-
panded in (2) is empty.)
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Figure 1. Visual code for binary tree search.

4 Visual Binary Tree Abstractions

In this paper, we describe a visual formalism for imple-
menting dictionary “search”, “insert”, and “delete” opera-
tions via binary search tree algorithms. This will be done
by manipulating nodes and fragments in a visual way.

4.1 Fragments and Subtrees

Before we proceed, we need to introduce the notion of a
fragment: a fragment is a (possibly empty) connected sub-
graph of a binary tree. A fragment is similar to a subtree in
that it consists of a root node and descendents of that node.
Unlike a subtree, a fragment need not include all descend-
ents of its root.

4.2 Visual Depiction of Nodes and Frag-
ments

Visually, we use a circle to represent a node and a triangle
to depict a (possibly empty) tree fragment. We color nodes
and fragments to indicate various properties that they may
have. For example, pink indicates keys less than a certain
key K while the darker magenta indicates keys greater than
K. (See Figure 1, (4a).)

A fragment may also be colored pink on the left and
magenta on the right. This indicates that the fragment may
have some nodes with keys less thanK and some nodes with
keys greater than K but that it doesn’t have a node with key

search insert
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Figure 2. Visual code for binary tree insertion.

K. (For example, see Figure 1, (3b).) The vertical bound-
ary between the pink and magenta indicates a path of nodes,
(x1; x2; : : : ; xj), such that:

1. the key at each xi is not K; and

2. xi is the left (resp. right) child of its parent xi�1 if and
only if K is less (greater) than the key at xi�1.

Intuitively, this path is the path followed if we search the
binary tree looking for key K. Consequently, we call it a
search path.

(In Figure 6, (a), bottom, we show: (1) an abstract tree
diagram with the upper fragment consisting of pink and
magenta halves; (2) a sample binary tree from the class of
trees represented by the abstract tree diagram. In this case,
we were searching for the key ‘L’. The nodes represented
by the vertical boundary (separating the pink and magenta
halves) have keys ‘O’ and ‘H’.)

A green node labeled K indicates that the node has the
desired key K, while a green fragment labeled K indicates
that the (non-empty) fragment has a node in it which has key
K. (In Figure 1, (4c), a node with key K is explicitly shown
in the tree. In Figure 2, (4), we just know that some node in
the tree has key K.)

5 Visual Binary Tree Navigation

The user can navigate around a binary tree by changing
the nodes and fragments explicitly visible in the tree. This
approach is flexible and more natural than using pointer
variables (as is done in textual programming languages).
There are three main operations for navigation: expand, col-
lapse, and insert empty fragment.

5.1 Expand

The expand operation allows one to see an additional
node in a binary tree fragment if one exists, or to otherwise
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Figure 3. Visual code for binary tree deletion.

determine that the fragment is empty. (In Figure 1, (2), we
use the expand operation to show the root node of the selec-
ted subtree if the subtree is non-empty (as in state (3a)), or
to indicate that the subtree is empty (as in state (3b)).)

If the fragment being expanded is non-empty, then the
particular node that will be shown depends on whether the
fragment is a subtree or not. If the fragment is a subtree, then
the fragment expands into a node (i.e., the root) connected to
its left and right subtrees. (This is what happened in Figure
1, (3a).)

If the fragment is not a subtree then there is some node
(or fragment) below it. In this case, the fragment expands
by showing the parent of that node (resp. fragment). As that
parent may have the node (resp. fragment) as its left or right
child, we have two cases. (In Figure 1, (4c), the top fragment
would expand by revealing the parent of the node labeled
K.) This latter type of expand is useful for moving up in
a tree, as one might do to maintain a balanced binary tree
structure.

5.2 Collapse

The collapse operation allows one to combine several
fragments into one fragment. The fragments to be combined
must be adjacent to each other in the tree. (For example, in
Figure 1, (4a), we use collapse to combine three tree frag-
ments into one, thus yielding state (2).) One can also col-
lapse a single node to turn it into a subtree. This can be use-
ful in forming a loop invariant for moving up a tree after the
insertion of a node.

The fragments being collapsed may have different prop-
erties. Whether the resultant fragment inherits a property
from one of its constituent fragments depends on the type of
the property and on whether the other fragments have that
property:1

1. If the property is disjunctive, then if any of the frag-
ments have it, then the resulting fragment will have it.
(For example, in Figure 2, (2a), the resultant fragment,
(4), inherits the property that “it contains a node with
key K” because that property is disjunctive.)

2. If the property is conjunctive, then all fragments must
have it for the resulting fragment to have it. (For ex-
ample, in Figure 2, (2a), any property signifying nodes
with keys less than or greater than K are not pre-
served in (4) because such properties are conjunctive.
However, in Figure 3, (6a), the fragments to be col-
lapsed all have the property that “all nodes have keys
greater than K”, so the resultant fragment, in (5), re-
tains this property.)

1Similar rules can be formulated for “expand”, but we shall not do so
here.
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5.3 Insert Empty Fragment

The insert empty fragment operation allows one to insert
an (initially) empty fragment anywhere in the abstract bin-
ary tree. In doing so, we obtain a new state that represents
a possibly larger class of binary trees that includes all those
represented earlier. Inserting empty fragments in this way
allows us to create loop invariants, which we use to form
loops.

Whenever we insert a fragment, it is initially empty. This
means we can make the new fragment have any property we
desire — as long as that property doesn’t imply the exist-
ence of a node. (For example, in Figure 1, (1), (2), we add
an empty fragment with the property that “no node have key
K” and that the fragment’s child “is on the search path”.)

5.4 An Example

We have now described various ways to navigate around
a binary tree. These concepts are sufficient to understand
the binary tree search algorithm shown in Figure 1. The al-
gorithm is executed on an sample tree in Figure 6, (a).

Initially, we prepare to search for the key K in the tree
by adding an initially empty fragment above the currently
selected subtree (in state (1)). This new fragment does
not have any nodes with key K (so half of the fragment
is colored pink while the other half is colored magenta).
Moreover, the new fragment’s child (i.e., the subtree) is on
the search path. Upon adding the empty fragment, we obtain
the the loop invariant for the search (shown in state (2)).

At this point, we wish to determine whether there is a
node with keyK in the selected subtree (in state (2)). So, we
expand the subtree, and depending on whether the subtree is
empty or not, we obtain state (3b) or state (3a), respectively.
If the subtree is empty, then we have shown that no node in
the binary tree has key K.

If the subtree is not empty, then we have revealed its root
node. We now compare this node’s key with K. The com-
parison yields one of three states (4a), (4b), (4c) depending
on whether the node’s key was greater than, less than, or
equal to K, respectively.

If the node’s key is equal to K, then we have found the
node and we are done. Otherwise, we are in state (4a) or
(4b). At this point, there is still a subtree which might con-
tain a node with key K. So, we collapse the other fragments
(which we know do not containK) to obtain the loop invari-
ant in state (2). In this way, we have formed a loop by match-
ing the loop invariant.

In Figure 6, (a), we show the execution trace of this al-
gorithm on a sample binary tree. (This trace was generated
by the Opsis system, which we describe in Section 8.)

6 Visual Binary Tree Manipulation

None of the operations of Section 5 actually change the
binary tree in any way. In this section, we present some op-
erations that do make changes.

6.1 Insert Node

The operation insert is used to put a new node in a binary
tree. The insert operation changes the structure of the tree,
so if the user is working with a binary search tree, it may be
that the insertion destroys the key ordering property of the
tree. To avoid this problem, insertions are only allowed if
the user has established that the point of insertion is indeed
the right location for the key K – that is, that the insertion
lies on the search path. (In Figure 2, (2b), the user has estab-
lished that the insertion point lies on the search path so the
he can now insert the node with key K at that point. After
the insertion, the search path is no longer required. Corres-
pondingly, the top fragment changes color to yellow which
indicates keys not equal to K. We also use blue to indicate
a region that includes the inserted node such as in states (3)
and (5).)

6.2 Remove Node

The operation remove is used to take out a node from a
binary tree. If the node to be deleted has at most one child,
then the remove operation on that node is sufficient. Ob-
serve that taking out a leaf or node with one child cannot
destroy the key ordering property of a binary search tree. (In
Figure 3, the remove operation is illustrated in states (3b)
and (4b). After the deletion, the search path is no longer re-
quired. Consequently, the top fragment changes color to yel-
low which indicates keys not equal to K. We also use red to
indicate a region that was previously a child of or containing
the node being deleted; see states (7) , (8), and (10).)

If the node to be removed has two children, then the user
must first find the inorder predecessor or inorder successor
node of K. In this case, the operation moves the node in-
formation from the inorder predecessor (or successor) to the
node and removes the inorder predecessor (resp. successor),
which has at most one child, from the tree. (As an example
of such a case, see Figure 3, (6b) and (9).)

6.3 Other Operations

One can add other operations as required that manipulate
a binary tree. For example, for implementing balanced bin-
ary search trees, we provide “rotate left” and “rotate right”
operations. We also provide “compare info” and “update
info” for maintaining additional information in the nodes
such as balance numbers for AVL trees. (To see some of
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these operations in action, refer to Figure 7 (a), (b), and (c)
for sample execution traces of splay tree insertion, AVL tree
insertion, and red-black tree insertion algorithms, respect-
ively.)

Generally speaking, one should provide operations that
are high-level but that do not trivialize the algorithm being
taught. Moreover, we provide only operations that maintain
the key ordering property of the binary search tree; other-
wise, we feel that the operation is too low-level and error
prone.

6.4 More Examples

We consider the binary tree insertion and deletion al-
gorithms in Figures 2, and 3, respectively. The insertion and
deletion algorithms are executed on sample trees in Figures
6, (a) and (b), respectively.

In the binary tree insertion code, we first perform a search
(as defined in Figure 1) for key K in the tree. This yields
two cases: either a node with key K is found (state (2a)) or
no such node exists in the tree (state (2b)). If we found a
node with key K, we simply collapse the fragments in the
tree (to yield state (4)). If not, we must insert a node with
key K. However, in state (2b), we have explicitly identified
the search path for key K. Thus, we can simply insert the
new node. Finally, we collapse the resulting fragments to
yield state (5).

In the binary tree deletion code, we again perform a
search for key K in the tree. If no node has key K, then
we are done (as in state (2b)). Otherwise, we have a state
with the node with key K explicitly shown (as in (2a)). At
this point, we check if the node with key K has less than
two children. If so, then a simple “remove” operation suf-
fices. (We check for a left child in states (2a) and for a right
child in states (3a). The results of the deletion are shown in
states (7), (8), and (10).) If the node with key K has two
children, then we find its inorder successor so that we can
delete the node with the more complex form of the opera-
tion “remove”. We start the search for the inorder successor
by adding an initially empty fragment above the node’s right
child so that the right child is on the leftmost path in that
fragment (as shown in states (4a), (5)). Now, using a com-
bination of “expand” and “collapse”, we descend left along
the nodes until we reach the inorder successor (as is done
with the loop in states (5), (6a) which eventually terminates
to yield (6b)). Next, we invoke the “remove” operation on
the node with key K to perform the deletion (as is done in
states (6b), (9), and (10)).

7 Correctness

The visual programs presented in Figures 1, 2, and 3 are
close to also being correctness proofs.

For example, consider the binary tree search program in
Figure 1. State (2) at the head of loop (2), (3a), (4a/b), (2)
is a visual loop invariant. The proof that this loop invari-
ant holds is also shown visually: in the first iteration, the
loop invariant holds vacuously because the fragment inser-
ted is empty; in subsequent iterations, the sequence (2), (3a),
(4a/b), (2) preserves the loop invariant (as long as no match
is made yet). Thus, the loop invariant in state (2) is proved
by structural induction in a visual way.

From the visual program, we know that if the program
terminates, then it will either find the node with key K or
assert that no such node exists. However, the program does
not show that the algorithm terminates or how long it takes
if it does.

Generally speaking, our visual formalism allows the user
to prove certain structural properties about the tree structure
and also ensures that the key ordering of binary search trees
is maintained. However, for complicated algorithms, one
may need to prove other properties that are not readily en-
coded in the tree diagrams. In this case, we recommend that
either the student simply not prove such properties, or that
he annotate the states with English text to fill in the details
of the proof.

8 Implementation

We have been working on a system named Opsis, which
implements the model and domain described in Sections
3–6. (The word “opsis” is Greek for the visual image of
an object.) Opsis is a Java applet and can be accessed at
http://www.cs.washington.edu/homes/amir/Opsis.html.
A snapshot of the system is shown in Figure 4.

8.1 User-Interaction

A user implements an algorithm by starting out with the
initial state and repeatedly invoking operations on one of the
final states at each point. (For convenience, the user is al-
ways presented with a history of the computation and a list
of all final states at every step of the process; see Figure 4.)
This process continues until the only remaining final states
in the program represent valid results of the algorithm being
defined.

In particular, a user creates a state graph by concentrating
on one state at a time. The user selects by mouse some tree
fragment(s) in the current state and invokes an operation on
that selection. Invoking an operation causes the creation of
transitions from the current state to one or more other res-
ultant states. One of these resultant states (chosen arbitrar-
ily if there is more than one) replaces the current state on
the screen. Thus, creating a program is akin to designing an
“abstract animation” for the algorithm. Also, if any of the
resultant states match one already in the program, then the
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Figure 4. The binary tree deletion algorithm developed
in the Opsis system. Editing occurs on the current state
which dominates much of the display. On the right, a se-
quence of states show a history of the computation that
leads to the current state. Observe the arrow in the state
history list: this arrow indicates that the operation on
the state at its tail of the arrow yields the state at its head
(thus indicating a loop). At the bottom, the final states
of the computations are shown (i.e., these are states at
which the computation terminates). The user may add
comments to the state in the white region near the top.
Finally, observe the bubble help which explains what the
various property colors mean.

current state is linked to the one already present if the user
so wishes; otherwise new states are created as required. One
may instruct Opsis to avoid matching two states even if their
visual diagrams are identical because the two states are ac-
tually different — but the visual formalism is insufficient to
distinguish them.

(A sample session using Opsis is shown in Figure 5. In
this figure, the user has implemented the binary tree search
algorithm: (a) shows the initial state; (b) shows the state ob-
tained after inserting an empty fragment; (c) shows the state
in which the keyK is found; and (d) shows the case in which
the key in the node shown is too small so a collapse opera-
tion is performed to match the loop head in order to further
explore the right subtree.)

8.2 Imitate Commands

In many balanced binary tree algorithms, such as with
AVL trees, one often has to deal with large computations
that are simply mirror images of one other. To reduce the
programming effort for such computations, the student may
simply implement the algorithm for one case, and then have
Opsis automatically generate states for the mirror image
case. Specifically, the user can invoke the “imitate mirror
image” command on the current state. Opsis then looks for
the mirror image state and performs a traversal of the state
graph at that location so as to generate the new mirror states
for the mirror image case. Although this command is a heur-
istic, we found it usually leads to the desired results.

It may also be the case that the user may wish to repeat
the same code several times in the algorithm. For example,
to implement the splay algorithm, one repeats similar code
for three cases that arise depending on whether we bubble up
the node with key K, its inorder predecessor, or its inorder
successor. Moreover, at times we may even want to imple-
ment the same code even though the states in each case have
trees with slightly different structures. For example, in an
AVL insertion algorithm, one might implement the rotations
involving the inserted node as a special case, and then use
similar code for rotations higher up in the tree (that do not
involve the inserted node). To do this in Opsis, the user se-
lects a state, moves to the similar state, and invokes the “im-
itate selected state” command. This will perform a traversal
of the state graph starting at the selected state so as to gen-
erate states for the similar case. Again, this command is a
heuristic. Unlike the “imitate mirror image” command, this
command may ask the user for advice on whether to change
information stored at the node in the same way or whether
to match a state encountered earlier or to ignore the match.
The heuristic usually leads to the expected results.

It may appear that the “imitate” commands are an un-
necessarily complicated way to program without functions.
Indeed, our motivation for these commands is to allow the
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Figure 5. Construction of the binary tree search algorithm in Opsis.
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user to program without worrying about structuring their
code. That is, they can simply program on a flat state space.
There are several advantages to this approach: (1) the stu-
dent can concentrate on the algorithm rather on how to struc-
ture code for the algorithm; (2) the visual abstractions can
be kept simple as there is no need to represent functions (or
their parameters) and modules; and (3) the user need not
consider all cases at once, but just work on one at a time.

9 User Testing

We have done some preliminary user testing with stu-
dents taking CSE 373, a third year data structures course for
non-majors at the University of Washington. Students in this
class typically major in engineering, math, or science.

Students in CSE 373 were required to do a final project
with one of the possible topics involving Opsis. In the Opsis
project, the students implement two balanced binary search
tree algorithms of their choice. (For example, AVL insertion
counts as one algorithm.) Both algorithms could be done in
Opsis or one in Opsis and another in a standard textual pro-
gramming language. (Most students chose C++ as a textual
language.) Students could work alone or in pairs.

Students were given a tutorial and documentation on the
basics of the Opsis system. However, we did not explain to
them the balanced binary search tree algorithms; they had to
understand them on their own from various texts.

Ultimately, eight groups chose to do their final course
project using Opsis. Three of these groups consisted of
pairs. The following observations are based on the student
reports and a questionnaire. Although our user testing did
not include enough students for a statistically significant
study, we were able to obtain insight into the experiences
students had with the Opsis system.

9.1 Learning Curve and Implementation
Speed

One of the reasons we built Opsis was to provide a
way for students to implement complicated tree algorithms
without worrying about low-level implementation details.
In particular, students need not perform any pointer manip-
ulation nor structure their code in any way (eg., using func-
tions or modules). In so doing, we hoped that students would
concentrate more on the actual algorithm rather than on im-
plementation details.

We were partially successful. Although students indic-
ated that Opsis had a non-trivial learning curve, they also
said that once they understood the system, they were able
to implement tree algorithms quickly.

Students typically spent 1–5 hours to learn Opsis. Of
course, there was almost no initial learning period for textual

languages as the students were already quite familiar with
them.

After the initial learning period, students spent about
about 2–20 hours per algorithm using Opsis. Simpler al-
gorithms such as Splay tree algorithms took about 2–10
hours while more complicated algorithms such as those for
AVL tree took between 7-20 hours.

Surprisingly, students spent roughly the same time with
textual programming languages. However, one group was
not able to implement the Splay tree algorithms in C++ at all.
Time for the AVL tree algorithms varied from 2–20 hours.
(The students did not report any times for the splay tree al-
gorithms implemented using textual code.)

We expected the Opsis implementation times to be sig-
nificantly less — not roughly about the same as those for
textual code. However, there is tremendous variation in the
times observed – probably a result of the variation in the stu-
dents’ abilities and background. Thus a much larger sample
is necessary to test this hypothesis. Moreover, some stu-
dents copied textual code fragments from books. Others ex-
perienced technical problems with Opsis, which were even-
tually resolved.

9.2 Learning Visually versus Learning
Textually

As mentioned earlier, we did not have enough students
for a statistically significant study. However, from our ex-
perience, we found little difference in how well students
learned algorithms in Opsis versus textual programming
languages. Of course, students who implemented the al-
gorithm using a textual programming language had a bet-
ter idea of how to move pointers about in a low-level imple-
mentation. On the other hand, for some students the textual
implementation took longer or was too difficult to do.

9.3 Proof versus Programming

One interesting aspect of Opsis is that it completely blurs
the distinction between programming and proof. Certainly,
the creation of loop invariants and structural induction argu-
ments is a process close to proof. Yet, other operations feel
like programming.

We found it interesting that most students said imple-
menting algorithms in Opsis felt more like programming
than proof. However, one student disagreed: “most of the
time I am programming in Opsis, I treat it as a ‘proof”’. In-
terestingly, this student, more so than the others, felt that his
extensive programming experience in textual languages was
a hinderence to using Opsis. Thus, the move to Opsis made
the system appear very proof oriented.

Possibly another reason why most students saw imple-
mentation in Opsis as mostly like programming is that they
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(a) (b) (c)

Figure 6. Opsis execution traces. The algorithms shown are: (a) binary tree search; (b) binary tree
insertion; and (c) binary tree deletion.
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(a) (b) (c)

Figure 7. Opsis execution traces. The algorithms shown are: (a) splay tree insertion; (b) AVL tree
insertion; (c) and red-black tree insertion.
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were unsuccessful in forming loop invariants for complic-
ated algorithms. Most of their experience was with parts that
felt like programming.

9.4 Debugging

Strictly speaking, we did not need to allow students to
run their algorithms on examples. This is because an Op-
sis program, when properly commented, should be close to
a proof of correctness for the algorithm. However, Opsis
doesn’t completely enforce correctness during implement-
ation so mistakes may still occur. (Although Opsis enforces
low-level correctness dealing with pointers and tree struc-
ture, it doesn’t enforce high-level correctness dealing with
information stored at the nodes or amortized analysis ar-
guments.) Moreover, we felt that showing the student the
correspondence between the visual states and the concrete
states during execution would be helpful in clarifying the ab-
stractions and the algorithm itself.

Indeed, the ability to execute a program turned out to be
quite important. Many students indicated that half of their
time was spent programming new code while the other half
was spent debugging (i.e., repeated execution). We believe
there are primarily two reasons for this. First, students like
incremental development even if they have a proof of cor-
rectness – they would still like to check the proof. Second,
students obtain a sense of satisfaction from executing code.

9.5 Visual Clutter

Several students complained that it was difficult to keep
track of all the graph states particularly for the more com-
plicated AVL and red-black tree algorithms. We anticipated
this problem and created the final and history state lists to
alleviate the visual clutter. However, one student felt that
this restricted view to the state graph was a actually a prob-
lem because it was easy to become lost in the numerous al-
gorithm states. She said “When a change was made and I
progressed to the next state it was almost impossible to find
where I had previously been working.”

Another student who was implementing the red-black
tree insertion algorithm complained that Opsis required
more states than necessary because: (1) it kept track of
which subtree the key was inserted in which is not necessary
for the red-black insertion algorithm (but necessary for the
AVL tree insertion algorithm); and (2) it didn’t allow one to
consider nil pointers as black nodes (which would reduce the
number of cases in the red-black tree algorithm). Although
it is easy to automatically generate these additional states by
the “imitate” commands, we can see how new users of the
system may view this as unnecessary work and a factor in
the visual clutter problem.

9.6 Guidance versus Flexibility

One of our goals with Opsis was to provide the student
with some guidance without giving away the solution to an
algorithm. This principle permeates throughout our design.
For example, we hide the details of pointer manipulation,
provide functions to perform rotations automatically, keep
track of which subtree an insertion occurs in, and keep track
of where a deletion occurs.

Another goal was to allow the student to program without
creating any structure in the code. That is, programming is
done on a flat state space without any functions or modules.
The purpose for doing this is to allow the student to concen-
trate only on the algorithm and not on how to structure code
to implement the algorithm. In addition, we provide “imit-
ate” commands to handle similar cases automatically in the
flat state space. By avoiding program structure, we “guide”
the student towards the algorithm and away from structur-
ing code. (That is, students can’t structure code even if they
want to.)

Unfortunately, this guidance has a price — flexibility.
Several students complained that they had very little free-
dom in the way they implemented an algorithm. One student
wrote “it has more guideline than a high-level programming
language such as C++ but it has less flexibility for the pro-
grammer.” (Indeed, most implementations for the same al-
gorithm were very similar.) Although we view this as an ad-
vantage of using Opsis, it turns out that this lack of freedom
hinders the progress of some students.

9.7 Graphical Abstraction

The learning curve mentioned earlier is partly a result
of the graphical abstraction. Most students found the ab-
stract states confusing at first but became proficient with
them after some experimentation. One student wrote “It
takes some getting used to think in tree fragments. Once I
am in the ‘mode’, I don’t have any problem with the abstract
representation of the tree structure.” A few students were
confused about how a state before an operation corresponds
visually to one after the operation. (This is probably due to
the way the fragments move about automatically when the
tree is changed.)

Students generally agreed that the graphical representa-
tion allowed them to “see” the algorithm clearly. One stu-
dent wrote “The ability to see an algorithm take shape on
the computer screen was an incredibly valuable learning ex-
perience.” Another wrote “the ability to manipulate abstract
tree fragments versus dealing with the switching of pointers
makes the algorithm much more understandable and easier
to learn”.

Some students found their extensive experience in tex-
tual programming languages made it harder to learn Opsis.
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A student wrote “All the books I have read and the classes
that I have attended were all in textual languages, so I can
think much faster in a textual language than I can in Opsis.”
On the other hand, students who said they think better visu-
ally found the graphical abstractions to be very valuable.

9.8 Loop Invariants

We expected students to have trouble with building loop
invariants while implementing algorithms. However, we
believed this to be such a valuable activity that we made
loop invariants very explicit in Opsis. Indeed, programs im-
plemented in Opsis are essentially structural induction argu-
ments with the visual loop invariants being the induction hy-
potheses.

As there is no automated way to come up with a good
loop invariant, the process involves guessing and intuition.
One student wrote “On the first try, I had lots of trouble
building loop invariants.” The problem was particularly
acute with the more complicated AVL tree algorithms. In-
deed, no group was successful in implementing a complete
AVL tree insertion algorithm because they couldn’t come up
with a suitable loop invariant. (Their implementations only
handled cases where the rotations are done at the base of the
tree just after insertion.) However, students were able to do
the simpler splay tree algorithms.

We believe explicit loop invariants clarify the algorithm
and make its correctness proof more apparent. One student
wrote: “finding the loop invariants helped to solidify the re-
cursive nature of binary tree algorithms in my mind and the
graphic nature of the program allowed me to actually see the
loop.”

9.9 Demonstrating Concepts

Although our motivation behind Opsis was to allow stu-
dents to implement algorithms through visual programming,
several students suggested other uses. In particular, stu-
dents suggested that Opsis might be useful for demonstra-
tion. For example, a professor might demonstrate an al-
gorithm in class by using Opsis. Unlike standard algorithm
animations, an Opsis demonstration can be more interactive
and can actually show the students the abstract loop invari-
ants and structural induction arguments for the algorithm. In
this way, Opsis can be useful in enhancing written textual
proofs by showing key steps in an abstract visual manner.

9.10 Teaching Non-majors

Most universities have computer science courses for stu-
dents majoring in other disciplines. From our experience
with CSE 373, it is clear that some of these students do not
have the same programming abilities as computer science

students. Consequently, Opsis may be particularly suitable
for such classes as it allows the professor to assign complic-
ated algorithms in such a way as to avoid laborious low-level
implementation details that would otherwise discourage stu-
dents. (Of course, we do not advocate only using Opsis in
such courses; implementation with a textual programming
language is still essential.)

10 Conclusion

In this paper, we have proposed a new way to teach binary
tree algorithms through visual programming. We believe
that this approach better allows a student to implement an
algorithm while concentrating on why it works rather than
on low-level implementation details. Moreover, our visual
approach not only yields a program but also a proof of some
properties maintained or that result from the computation.

To validate our approach, we have built a Java applet,
named Opsis, that demonstrates the ideas in this paper. In
addition, we have performed a user study in a data structures
course. From this experience, we found that although Opsis
has a non-trivial learning curve, students were able to learn
and use the applet to implement the various algorithms. We
also found students felt the system clarified the algorithms
by making tree structure and loop invariants explicit visu-
ally. It would be of interest to conduct a more extensive
study to determine how much faster (if at all) students can
implement algorithms with Opsis as compared to textual
programming languages.

Finally, we believe visual programming is not only a
good way to teach binary tree algorithms (and more gener-
ally, data structures), but also a promising way to teach al-
gorithms in other fields. It would be interesting to explore
such possibilities further.
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