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Abstract

In this paper, we propose a new mechanism,imita-
tion, which can be used in a programming by demon-
stration system as an alternative to generalization. A
system using imitation always asks the user for help
when a new case arises in an algorithm. At this point,
the user may demonstrate the steps for this case or tell
the system: (1) that this case is similar to another one
already demonstrated and (2) in what way it is simi-
lar. In this way, the user can use imitation to generate
code for the new case based on the one already demon-
strated. Generalization is not required at any point
while programming using this technique. We demon-
strate our imitation method using Opsis, a system we
built to teach binary search tree algorithms.

1 Introduction

Existing programming by demonstration systems
involve generalization in one form or another. For ex-
ample, consider demonstrating an algorithm with sev-
eral cases that are similar in some ways. By using
generalization, we can abstract out the similarities and
avoid having to demonstrate each of these cases sepa-
rately. How this would be done varies widely among
programming by demonstration systems.

David C. Smith's Pygmalion [11, 12], the first pro-
gramming by demonstration system, requires users to

specify the program in full generality — so they must
anticipate and generalize similar cases of an algorithm
ahead of time to avoid repetition in the demonstration.

Henry Lieberman's Tinker [5, 6] allows users to
demonstrate one case at a time and will ask them
to provide a predicate to distinguish one case from
another. In this way, users never have to anticipate
cases (by providing conditionals ahead of time); they
only have to react to the current situation. However,
this feature doesn' t reduce the number of cases to be
demonstrated.

Daniel Halbert's SmallStar [3] allows the user to
demonstrate only one of the cases. Demonstrating the
one case generates a straight-line program which users
generalizeafter the factby manually adding set itera-
tion and conditionals. The generalized code can then
be applied to other similar cases.

Brad A. Myers' Peridot [10, 9] uses inferencing to
generalize a demonstration of one case so that it can
be applied to other similar cases. To reduce incorrect
generalizations, Peridot asks questions to aid its infer-
encing process.

Whether generalization is done a priori or a posteri-
ori, with or without the aid of inferencing, we encoun-
ters two major problems:

1. it requires a more abstract graphical vocabulary
than the cases themselves; and

2. it requires the user to abstract and generalize a
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case so that the demonstration applies to other
cases also.

Concerning problem (1), David J. Kurlander writes
in [4], p. 168:

“If the number of generalizations known
by the system is large, then the graphical vo-
cabulary must also be large. Unless the same
graphical conventions are used by the sys-
tem during normal editing, the user would
need to learn a new visual language in order
to define macros.”

For this reason, many systems such as Kurlander's
Chimera [4] and Halbert's SmallStar [3] depict gen-
eralizations by using textual annotations along with
the particular case demonstrated by the user. How-
ever, such a solution still requires the user to interpret
a more complicated textual/graphical vocabulary.

Concerning problem (2), David C. Smith writes
in [12], p. 32:

“. . . on the one hand, it (Pygmalion) at-
tempts to make programming accessible to
a wider class of users; on the other hand, it
relies on the kind of planning which only ex-
perienced programmers are good at.”

Abstracting and generalizing similar cases requires ex-
perience and planning. Demonstrating each case sep-
arately (without generalization) is easier conceptually
but repetitive and laborious.

In this paper, we propose a new mechanism,imita-
tion, which is an alternative to generalization that alle-
viates these two major problems. A programming by
demonstration system using imitation always asks the
user for help when a new case arises. At this point, the
user may demonstrate the steps for this case or tell the
system: (1) that this case is similar to another one al-
ready demonstrated and (2) in what way it is similar. In
this way, the user can use imitation to generate code for
the new case based on the one already demonstrated.
Generalization is not required at any point while pro-
gramming using this technique.We demonstrate our
imitation method using Opsis [7], a system we built to
teach binary search tree algorithms.

The remainder of the paper is organized as follows:
Section 2 presents a typical user interaction using the
imitation technique; Section 3 describes the imple-
mentation; Section 4 surveys related work; and Sec-
tion 5 concludes with a summary and future research
directions.

2 User Interaction

In this section, we demonstrate our imitation
method using Opsis, a programming by demonstration
system we built to teach binary search tree algorithms.
In particular, we show how imitation can be useful in
demonstrating the double rotations in the AVL tree in-
sertion algorithm [1].

2.1 AVL Tree Insertion

An AVL tree is a binary tree in which each node has
left and right (possibly empty) subtrees whose height
differ by at most one. Thebalanceof a node is the
height of its right subtree minus the height of its left
subtree. Thus, each node has balance -1, 0, or +1. (The
balance is stored explicitly in each node. See Figure 1,
(5).) AVL trees are attractive because: (1) every AVL
tree withn nodes has heightO(logn) (so lookups take
O(log n) time); and (2) a node can be added or deleted
from an AVL tree withn nodes in timeO(log n), while
preserving the AVL property.

The AVL tree insertion algorithm works by: (1) in-
serting the node as a new leafx (following the standard
binary tree insertion method); (2) updating the bal-
ances of ancestors ofx, in order of increasing distance
from x; and (3) if an ancestor's balance becomes�2,
then, depending upon the situation, a single or double
rotation is performed to restore the AVL tree property.

(In Figure 1, (1), the node with key “T” has been
inserted as a leaf and the balance numbers of the an-
cestors with keys “W” and “R” have been updated ap-
propriately. Since the node with key “R” now has a
balance of +2, a double rotation is performed. First, a
right rotation about the node with key “W” yields (2).
Second, a left rotation about the node with key “R”
yields (3). Finally, an update of the balance numbers
of the nodes with keys “R” and “W” yields (4) and (5),
respectively.)
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(1)

(2)

(3)

(4)

(5)

Figure 1. A double rotation in the AVL tree in-
sertion algorithm.

To illustrate a typical user interaction using imita-
tion, we consider how a student might demonstrate the
double rotations performed in the AVL tree insertion
algorithm using Opsis. The student does this by ma-
nipulating abstract trees, each of which represents a set
of binary trees with particular properties. (Opsis uses
programming by abstract demonstration [2].) During
such a demonstration, the student would encounter six
abstract cases in which a double rotation is required.

(See Figure 2. A black node denotes the newly in-
serted node while a black subtree indicates a subtree
containing this node. The case in Figure 2 (a) corre-
sponds to the example in Figure 1 and can be demon-
strated using Opsis as shown in Figure 3. Also, ob-
serve that case (a) and its mirror image involve the
newly inserted node in the double rotation while cases
(b) and (c) and their mirror images do not as they occur
higher up in the tree.)

If we were to generalize one of these double rotation
cases so that it applies to the other five, then we would
encounter the two problems mentioned in Section 1.
In particular, such a generalization would require more
abstract graphical notation (especially to take into ac-
count the mirror image cases!) and/or textual annota-
tions. Moreover, it is unlikely that the student would
realize that there are indeed six double rotation cases
without considerable “planning ahead”.

Of course, demonstrating the double rotation and
updating the node balance numbers appropriately six
times is rather laborious — particularly since the six
cases are handled similarly. Instead, we show how a
student can demonstrate the double rotation steps once
(as shown in Figure 3 for case (a) in Figure 2) and use
imitation to generate the steps for the other five cases.
In particular, we describe two imitation mechanisms
available in Opsis that make this possible:imitate mir-
ror imageandimitate selected state.

2.2 Imitate Mirror Image

Many algorithms involve some form of symmetry.
In particular, binary tree algorithms tend to have cases
which are mirror images of other cases. Indeed, the
steps required for the double rotation cases (a), (b), and
(c) can be “mirrored” to obtain those steps for the re-
spective mirror images of those cases (and vice versa).

When presented with a case to demonstrate, the stu-
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(a)

(b)

(c)

Figure 2. The three cases shown above and
their mirror images (with balance numbers
negated) all require a double rotation in the
AVL tree insertion algorithm.

dent may instead instruct Opsis to imitate the steps for
the mirror image of that case — if it was demonstrated
earlier — but with the steps mirrored accordingly.

(For example, the student can demonstrate the steps
for Figure 2 (a) as shown in Figure 3 and then tell Op-
sis to generate the steps automatically for the mirror
image of that case. The imitation mechanism automat-
ically swaps left and right rotations steps and negates
the balance numbers in the update steps.)

Observe that the imitate mirror image mechanism
is robust and predictable. Moreover, no inferencing
is required. A student who uses this mechanism must
invoke it manually and must be aware of the symme-
try in the algorithm. In domains with several kinds of
symmetry (eg., linear algebra), the user would choose
one of several imitate methods (eg., imitate the steps
for the image obtained by reflecting the current image
along the diagonal, x-axis, y-axis, etc...).

2.3 Imitate Selected State

Using the imitate mirror image mechanism alone,
we can reduce the number of double rotation cases that
the user has to demonstrate from six to three. By also
using the imitate selected state mechanism, we can re-
duce this number even further to just one case. We
describe how this can be done in what follows.

The imitate selected state mechanism requires two
steps: (1) the user selects a case by choosing its ini-
tial state; and (2) the user moves to another state and
invokes the mechanism to perform “similar” steps in
this case as is done starting at the selected state.

The two cases need not match exactly (in which
case no imitation is required!). Consequently, we
use inferencing to determine the parameters of the
commands “replayed” from the old case in the new
case. These parameters include the particular nodes
and fragments of the tree that a command is invoked
on (eg., the node whose balance number is to be up-
dated) as well as the results of the command (eg., the
new balance number to be stored at that node).

As with other inferencing systems, such as Peridot
[10, 9], Opsis may ask the user questions throughout
the inferencing process. In particular, it asks the user
to confirm or modify the information in update com-
mands (eg., those updating balance numbers in an AVL
tree algorithm).
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(1)

(2)

(3)

(4)

(5)

Figure 3. The demonstration done by a user
in Opsis to implement the double rotation
case illustrated in Figure 1.

(Returning to our example, we can use this imita-
tion mechanism to perform similar steps for the case in
Figure 2 (b) as those done for case (a). In this process,
the user can tell the system that the update performed
in step (4) in Figure 3 that changes -1 to 0 for case (a)
should now change -1 to +1 for case (b). Observe that
the double rotation for case (a) involves a node with
balance 0 before the double rotation that also ends up
with balance 0 after, so an update is not required. This
is no longer true for case (b) since that node has bal-
ance -1 before the double rotation but 0 after. Conse-
quently, the steps generated by this mechanism are not
quite correct. The user can simply modify the newly
generated steps by adding a step that updates the bal-
ance number to 0 after the updates for the other two
nodes involved in the double rotation).

Imitating a selected state may not generate exactly
the right steps in the new case. For this reason, we may
want to modify, insert, or delete command(s) in the
middle of some sequence of steps. (For example, we
might want to update the balance number to 0before
the other two updates after the double rotation.) Such
editing changes can also be useful in correcting steps
demonstrated by the user manually. To perform such
changes, we can again use the imitate selected state
mechanism! Modifying command(s) can be done by
removing and inserting new commands so it suffices
to consider the latter two editing operations.

To insert command(s) in the middle of a command
sequence, one performs the following steps: go to the
state in which the command(s) are to be inserted (be-
fore the command on that state); select that state; re-
move the current command on that state (so the state is
now final); perform the new command(s); and imitate
the selected state.

To remove command(s) in the middle of a command
sequence, one performs the following steps: go to the
state following the last one with a command to be re-
moved; select that state; go to the first state with a
command to be removed; remove the command (so the
state becomes final); and imitate the selected state.

Using both imitate mirror image and imitate se-
lected state, one way to handle the six double rota-
tion cases for AVL tree insertion is to: (1) demon-
strate the steps for case (a); (2) invoke imitate mirror
image to generate steps for the mirror image of case
(a); (3) select case (a) and invoke imitate selected state
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to generate steps for case (b) and perform the correc-
tion described above; (4) invoke imitate mirror image
to generate steps for the mirror image of case (b); (5)
select the mirror image of case (b) and invoke imitate
selected state to generate steps for case (c) (with no ad-
ditional correction required this time as the steps im-
itated include three balance updates); and (6) invoke
imitate mirror image to generate steps for the mirror
image of case (c).

Unlike the imitate mirror image mechanism, the im-
itate selected state mechanism uses inferencing and
may yield unexpected results. However, this is miti-
gated by (1) asking the user to confirm or modify some
command parameter(s) throughout the process; and (2)
allowing the user to correct errors (again using the im-
itate selected state mechanism). Finally, observe that
whereas other systems use inferencing to aid general-
ization, Opsis uses inferencing to aid imitation.

3 Implementation

3.1 State Model

We assume that the computation is represented as a
state graph, which is a directed graph whose nodes
represent states and whose directed edges represent
transitions from one state to another. Computation
starts at theinitial state (which has no predecessors)
and ends at one of thefinal states(which have no
successors). Each non-final state has acommandthat
transforms the state to one of its successors. A cycle in
the state graph indicates a loop while a state with more
than one successor indicates a conditional command at
that state.

Generally speaking, our imitation mechanisms imi-
tate a subgraph of the state graph. This subgraph may
include loops and conditionals.

3.2 Imitate Mirror Image

The procedureimitateMirrorImage is shown in
Figure 4 and works as follows.1 Parameters is the
source state and parametera is the add state (i.e.,
where successors will be produced). We assume that

1The code in Opsis is more complicated because several differ-
ent states may have exactly the same visual representation.

// s: source state
// a: add state
// (s is always mirror image of a)
void imitateMirrorImage(s, a) f

// stopping condition
if (s.command==null or

a.command!=null) f
return;

g
// add ``mirrored'' command
a.command=mirrorCommand(s.command);
a.command.execute();
// follow successor(s)
for (i=1; i<=s.noSucc; i++) f

j=mirrorSucc(s.succ[i]);
imitateMirrorImage(s.succ[i],

a.succ[j]);
g

g

Figure 4. Code for imitateMirrorImage proce-
dure.

statess anda are mirror images of each other. We in-
voke a command on statea when s has a command
leading to some successor(s) buta does not. In that
case, we use the command in the sources, modified
appropriately for the mirror image, in statea. For each
successors0 of s, we determine the newly generated
mirror imagea0 of s0 (which is a successor ofa) and
we then invoke the procedure recursively ons0 anda0.

Let G be the state graph before invokingimi-
tateMirrorImage on statess anda. LetX be the set
of non-final states reachable froms in G (including s
if s is not a final state) whose mirror images are final
states or do not exist inG. For each statex 2 X, the
algorithm “mirrors”x's command and adds the result
to the mirror imagex of x (after addingx if necessary).

To determine the running time, it suffices to con-
sider the number of times a command is added dur-
ing the traversal. (This follows because the number of
successors of any state is bounded by a small constant
in Opsis so we can ignore those calls made on succes-
sors which return without adding a command since this
only requires a constant amount of work.) Since we
check thata doesn' t already have a command before
adding one toa, it follows that we only add a com-
mand to a particular statea once. Since the algorithm
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//s: source state in
// copied state graph
//a: add state in
// original state graph
void imitateSelectedState(s,a) f

s.visited=true;
if ( s.command == null or

a.command != null ) f
return;

g
a.command=s.command;
determineSelectedFragments(s,a);
a.command.execute();
for (i=1; i <= s.noSucc; i++ ) f

if (not s.succ[i].visited) f
imitateSelectedState(

s.succ[i],a.succ[i]);
g

g
g

Figure 5. Code for imitateSelectedState proce-
dure.

only adds commands to the mirror images of the states
in X, it follows that the running time isO(jXj).

3.3 Imitate Selected State

As explained in Section 2.3, the user first selects
a state to imitate. This selection actually makes a
copy of the part of the state graph that contains states
reachable from the selected state (including the se-
lected state). Unlike, the imitate mirror image traversal
which operates on one state graph, the imitate selected
state traversal operates on two state graphs: the origi-
nalG and the one copied from the selectionG0. This
copying ensures that: (1) exactly those states selected
will be used in the imitation process (even after man-
ual changes to these states after selection but before
imitation); and (2) the imitation process itself will not
affect the states being imitated.

The procedureimitateSelectedState is shown in
Figure 5 and works as follows. Parameters is the
source state and parametera is the add state (i.e.,
where successors will be produced). We add a com-
mand to statea when s has a command leading to
some successor(s) buta does not. In that case, we use

the command in the sources in statea. However, as
the trees in statess anda need not be identical struc-
turally, we call a heuristic proceduredetermineSe-
lectedFragments(s; a) to determine which fragments
to select in the tree of the add state before invoking the
command froms. (If the command is not applicable,
then an error will result and the imitation process will
halt.) Finally, for each successors0 of s not already
visited, we determine the matching newly generated
statea0 (which is a successor ofa) and we then in-
voke the procedure recursively ons0 anda0. Since we
never visit a state in the copied state graphG0 more
than once, the algorithm is guaranteed to terminate in
time linear in the size ofG0.

The determineSelectedFragments is a domain
dependent heuristic. Our implementation inOpsis is
rather complex and allows students not only to imi-
tate similar cases but also to make non-trivial editing
changes to the state graph. We refer the interested
reader to [8] for a description of the Opsis implemen-
tation of this procedure.

4 Related Work

Our imitation mechanism is most closely related to
the editable graphical histories of Chimera [4]. Ed-
itable graphical histories depict important events in
the history of the application by using a sequence of
panels. A user may make changes to the history se-
quence, in place, by edits to the panels themselves.
Any such changes are propagated automatically to the
present state. Moreover, the user can also select panels
in the history and “replay” the commands verbatim in
another context.

However, our imitation technique improves upon
the editable graphical histories in several ways.
Whereas Chimera maintains alinear history, we al-
low the user to construct a state graph. In this way, our
imitation algorithms can imitate not just a simple se-
quence of commands but a subgraph with conditionals
and loops.

Unlike Chimera which replays commands verba-
tim, our imitation mechanism is more flexible. In
particular, we provide more than one way to replay
commands in another context. For example, in Op-
sis we provide two mechanisms, imitate mirror image
and imitate selected state. Also, recall that the imi-
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tate selected state mechanism asks the user to confirm
or change updates to node information so even these
commands need not be replayed verbatim. Of course,
in other domains (such as linear algebra), there may be
many varieties of imitation mechanisms. As far as we
know, replaying commands in one of several distinct
ways is unique to our approach.

Chimera (and SmallStar [3]) actually provide a
macro definition mechanism that does handle condi-
tionals and loops. However, this mechanism requires
two steps: a demonstration step followed by a gen-
eralization step. The demonstration pass is a simple
sequence of commands while the generalization pass
allows the addition of conditionals and loops. Once a
macro is defined in this way, it can be applied to other
cases. Our approach avoids the generalization step and
provides a simpler scheme in which both the demon-
stration and imitation mechanisms allow conditionals
and loops.

Finally, we should mention that much of the work
on inferencing (such as in Peridot [10, 9]) can also be
used in our imitation method. However, it is preferable
to provide several varieties of imitate methods rather
than fewer more unpredictable ones that rely heavily
on inferencing. In this way, the user would make his
intent more explicit to the system by selecting the ap-
propriate imitation mechanism.

5 Conclusions and Future Work

In this paper, we have proposed a new mechanism,
imitation, which can be used in a programming by
demonstration system as an alternative to generaliza-
tion. By using imitation, a user can tell the system: (1)
that a case is similar to another one already demon-
strated; and (2) in what way it is similar. In this way,
the user can use imitation to generate code for the new
case based on the one already demonstrated. Imitation
is particularly useful in domains with some symmetry
(such as with data structure and linear algebra algo-
rithms).

Since generalization is not required at any point in
this process, we alleviate two major problems with ex-
isting programming by demonstration systems: (1) we
avoid having to use a more abstract graphical vocab-
ulary than the cases themselves (or to resort to using
textual annotations); and (2) we don' t require the user

to abstract and generalize a case so that the demonstra-
tion applies to other cases also.

However, imitation does require domain analysis to
determine the kinds of imitate procedures that would
be useful. Also, we have introduced a potential main-
tenance problem. Since generalization never occurs,
modifications to one case will not automatically prop-
agate to another similar case unless the user explicitly
performs another imitate to update that case.

For future research, it would be interesting to ex-
plore ways to keep track of imitations that have been
performed and warn the user when changes are made
to a case that was used to generate code for another
case. Perhaps the system can also propagate these
changes automatically at the request of the user.
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